
HIGHLIGHTS
Incorporates next-
generation Viper
compiler technology

State-of-the-art C compiler
Fast and compact

Support for MISRA-C:2004

Run-time error checking
facilities in the compiler

Profiling using code
instrumentation

CrossView Pro debugger

M16C instruction
set simulator

TASKING ROM
monitor debugger

Renesas PC4701
Emulator support

ELF/Dwarf support

Available for:
PC/Windows
SUN/Solaris

THE TASKING C/C++ COMPILER AND DEBUGGER VX-TOOLSET FOR M16C AND R8C/TINY
The M16C family, including R8C/Tiny, from Renesas is one of the most versatile 16-bit
microcontrollers on the market. The architecture provides developers of embedded software with
features such as: high-speed processing, ultra-low power consumption, and EMI/EMS noise
immunity, combined with high peripheral functionality and enhanced I/O capabilities.

The TASKING VX-toolset for M16C provides developers with the power of Altium’s in-house, next-
generation compiler technology framework, codenamed Viper. The toolset enables you to take
full advantage of the high-performance M16C architecture, generating code with the high level of
execution speed and code density needed for automotive, industrial and consumer applications.

EMBEDDED DEVELOPMENT ENVIRONMENT
With the TASKING M16C Embedded Development Environment (EDE), you can create and
maintain projects easily. All project-related aspects, such as the application source files, the tool
options (compiler, assembler, linker/locator, CrossView Pro debugger), file management, and the
options of the build process, are managed from one central point. File dependencies, as well
as the sequence of operations required to build the application, are handled automatically.

The M16C EDE offers many productive features for application and code development, including:

Explorer-like treeview control allowing simplified configuration of the TASKING tools and the M16C target processor
for the experienced, as well as the novice, user

Menu structure tuned according to the development work flow, offering an intuitive project management setup

Easy selection of target processor and new edit controls for project settings and configurations

Project Spaces that enable you to group multiple projects in one view, offering improved project management for more
complex developments

CodeSense that provides advanced coding assistance and offers rich type-ahead features, which help you in selecting the
next expected function parameter or available structure members. When positioning your mouse pointer over a function name,
the function prototype will be displayed

CodeFolio which enables easy insertion of template code, adding to coding efficiency and consistency.
It allows macro expansion and prompted input as you insert the code

The TASKING EDE makes code development and
project management easy

VX-toolset for M16C and R8C/Tiny

A predefined configuration for compliance with the MISRA
guidelines is available with a single click. It is also possible,
using pull-down menus, to enable a custom set of MISRA C
rules to suit specific company requirements.

To ensure compliance with the MISRA C rules throughout the
entire project, the M16C linker/locator can generate a MISRA C
Quality Assurance report. It lists the different modules in the
project with the respective MISRA C configurations which
were used to compile them.

The M16C toolset supports the original MISRA-C:1998 standard
as well as the new MISRA-C:2004 rules set.

Run-time error checking
TASKING’s run-time error checking capabilities in the compiler
offer a wealth of checks that reveal run-time errors when they
first occur. The kind of errors found by run-time error checking
are typically hard to find since they manifest themselves through
secondary effects or, in the worst case, will not manifest at all
prior to your product being shipped. By identifying the source
line where the error first occurs, the run-time error checking
facilities reduce the time spent in the debugger and increases
the quality of your software. You can specify whether the
application will terminate or continue when an error is detected.
These checks are implemented by generating additional code
and/or enabling additional code in the standard C library.
Run-time error checking has a nominal effect on code size and
execution speed and can be enabled on a module by module
basis, making it practical for use in debugging large applications.

Profiling
The compiler is enhanced with a profiler that uses code
instrumentation. Profiling can be used to determine which
pieces of your code execute slower than expected and which
functions contribute most to the overall execution time of a
program. A profile can also tell you which functions are called
more or less often than expected. The advantage of this new
profiling method is that it can give a complete call graph of the
application annotated with the time spent in each function and
basic block.

C++/EC++ COMPILER
Altium is one of the few vendors to offer object-oriented design
and coding possibilities for the M16C family through an ISO C++
compliant compiler. The advantages of C++ can be incorporated
into an existing C application one module at a time, providing
a graceful migration from C to C++. Inheritance reduces the
number of places where software behavior is defined and
thereby speeds up development. The C++ compiler automatically
includes a pre-link phase when templates are used.

Scalable C++
Compatibility with the Embedded C++ (EC++) standard allows
selective disabling of C++ features that may not be needed for
your embedded application. Code size overhead and run-time
inefficiency can be managed by selecting full, or partial,
compliance to the EC++ standard.

C COMPILER
Based upon Altium’s latest C compiler technologies,
the TASKING M16C compiler is easy to use and generates
the most optimal code possible, allowing you to take full
advantage of the M16C architecture.

TASKING compilers are tested for ISO and ANSI conformity
against authoritative validation suites such as Plum Hall and
Perennial. In addition, the optimization techniques of the
compilers are tested with various large real-world applications,
as well as industry benchmark standards such as Nullstone.

Fast and compact code
The VX-toolset for M16C, based on Altium’s Viper compiler
technology, generates code which is small and has a fast
execution speed in its default configuration. Depending on the
specific requirements of your M16C application, optimizations
can be tweaked for smaller code size or higher execution
speed.

Compiler optimizations include:

Partial Redundancy and Elimination (PRE), which detects and eliminates
repeating (sub-) expressions

Value rangetracking

Control-flow and code reduction optimizations that remove dead code
and perform transformations in order to minimize jumps

Function inlining, which replaces calls to small functions with inlined
copies of the function code

Interprocedural register allocation

Code compaction that identifies identical code sequences, creates a new
function from the sequence, and replaces the sequences with calls to the
new function

MISRA C
Based on the “Guidelines for the use of the C language
in vehicle based software” published by the Motor Industry
Software Reliability Association (MISRA®), Altium was the first
to implement the MISRA C concept in a software development
environment. Since then, the MISRA C guidelines have been
widely adopted by users across automotive, aerospace, industrial
and medical industries. MISRA C guides programmers to write
more robust C-code by defining selectable C usage restriction
rules. Through a system of strict code checking, the use of
error-prone C constructs can be prevented.

Fully-configurable MISRA C code checking

Industry-standard libraries
The TASKING M16C VX-toolset compiler contains all the
necessary ISO C++/ISO C libraries, run-time libraries, and
floating-point libraries. The floating-point libraries are supplied in
a number of highly useful variants that are assembly optimized.

Floating-point libraries include:

Optimized single precision float support

Double precision floating point support

Complex and imaginary type support

Trapping and non-trapping support

Source code for most of the library routines allows you to tailor
the libraries to your specific application.

ASSEMBLER
The TASKING assembler is supplied complete with linker/locator,
librarian and object format utilities.

Assembler features include:

Full macro and conditional assembler

Optimizing jump/call instructions

Extensive section directives

Full assembly source-level debugging

LINKER/LOCATOR
The linker/locator plays a pivotal role in the software building
process by combining the compiler- and assembler-generated
code and data sections with possible library functions and
allocating the result into available target memory.

The target-independent linker in the TASKING M16C toolset
allows you to accurately describe available target memory and
fully control the behavior of the locating process, so that all
pieces of code and data fall into their intended places.

Linker/Locator features include:

Automatic and user-specified allocation in target memory

Powerful, intuitive linker script language

Data/code section initialization

Powerful data/code overlaying facilities

Smart linking removing unreferenced and duplicate code/data

Industry-Standard ELF/Dwarf object output format

SREC and Intel HEX ROM image output formats

Data
default in 0 - 64 kB
default in 0 - 64 kB*

*Constants default in 0 - 1 MB

default in 0 - 1 MB

Qualifiers can be used in all memory models to overrule the defaults

Pointers
0 - 64 kB
0 - 1 MB, 16 bit arithmetic
0 - 1 MB, 20 bit arithmetic

Fully-configurable linker

Model
Small
Medium

Large

Model
Small
Medium
Large

Syntax and semantic checks
The compiler offers a vast array of syntax and semantic checks
that warn about potential undesirable effects or bugs in your
program. Early fixing of source code problems when reported
by the compiler generally only takes minutes as compared to
hours, or days, when the problem is discovered at run time.

Examples of compile-time checks include:

Validating printf and scanf format strings against the type
of the actual arguments

Using uninitialized memory locations

Detecting unused variables

Value tracking, which is used to detect errors such as

array subscript out of bounds

division by zero

constant conditions

M16C architectural support
The TASKING M16C VX-toolset provides full support for all
primary M16C series, including pre-prepared definitions, SFR
header files, and automated Cstart code generation.

The supported M16C series variations are:

M16C/60

M16C/30

M16C/Tiny

M16C/20

M16C/10

R8C/Tiny

The TASKING M16C VX-toolset offers a wealth of built-in
functions. Intrinsic functions appear as normal C functions, but
the code generator interprets them and, where possible,
generates more efficient code. Several pre-declared functions
are available to generate inline assembly code at the location of
the intrinsic function call, ensuring fastest execution by avoiding
the standard function calling and parameter-passing overhead.

Memory models
To take full advantage of the M16C microcontroller, the M16C
VX-toolset consists of three re-entrant memory models.

Memory models available:

Small

Medium

Large

CROSSVIEW PRO DEBUGGER
The TASKING M16C CrossView Pro debugger is the perfect
partner for checking, verifying and debugging your application.
With its easy-to-use interface and powerful, extensive
debugging features, CrossView Pro helps you debug your
applications faster. CrossView Pro provides multiple, resizable
and independently controlled windows, enabling you to choose
the windows you need to view the relevant aspects of your
code during debugging. It combines the flexibility of the C
language with the control of code execution found in assembly
language, bringing functionality that reduces the amount
of time spent on testing and debugging.

Functionality includes:

Basic through to advanced debugging features

Tracking scope and monitoring locals

Intuitive navigation through the source window

Double-click, right mouse button, and tip-point functions

Clipboard copy and paste

Bubble-Spy™ technology for easy and quick inspection
of variable contents

Code/data coverage and profiling (performance analysis)
in CrossView Pro Simulator

Source window
The main window is the source window. It allows you to view
source; step through your code; set and clear breakpoints,
assertions and code coverage markers; watch and show variables;
search for strings, functions, lines and addresses; and evaluate
expressions. The source window can display code in C source,
assembly, or mixed.

While moving the mouse pointer over your source, our Bubble-
SpyTM technology provides quick checks of variable values and
function prototypes. Double-clicking on a function call
automatically navigates to the corresponding source. From the
cursor in the debugger source window, you can jump directly
into the EDE editor, allowing immediate access to the source
line of the problem that needs correcting.

Multiple information windows
The CrossView Pro debugger offers a wealth of information
windows allowing you to monitor and modify data objects,
CPU registers, memory locations and the stack.

The data window enables you to watch and modify data
objects. Data structures can be shown collapsed as well
as expanded.

Register windows can be configured to display any set of
CPU and peripheral registers as well as their values. Defining
multiple Register windows helps you organize your focus.

The stack window displays the contents of the function-call
stack frame. You can easily configure stack-level breakpoints,
navigate to the function call’s source, and monitor local
variables for selected functions.

The memory window enables you to monitor and modify
any memory location, with complete control over size and
format of the data, as well as view coverage of the memory
range. All information windows are automatically updated,
and changed values are highlighted for easy identification.
In-situ editing allows you to modify values on the spot.

Advanced breakpoints
Breakpoints halt program execution and return control to the
user. In addition to industry-standard code and data breakpoints,
you can configure your application to halt based upon instruction
counts, cycle counts, or timer counts. All types of breakpoints
can be defined as ‘stop-and-go’ probe points.

Probe points briefly halt and immediately resume execution
of the application. During the brief period that the application
is halted, only user-specified actions will be performed. Through
this mechanism, probe points allow least-intrusive debugging
of time critical applications.

Finally, any number and type of breakpoints can be combined
into ‘breakpoint-sequences’. This allows easy specification of the
most complex conditions that need examining.

Spend less time debugging
with CrossView Pro

Multiple execution environments
The CrossView Pro debugger supports multiple execution
environments within a standard interface.

M16C instruction set simulator debugger

The simulator environment allows you to test, debug,
and monitor the performance of code in a known and
repeatable environment independent of target hardware.
It uses the same description file as the linker/locator
when locating your application and therefore knows
exactly where and how memory is mapped.

All CrossView Pro features, including C level trace,
code/data coverage, performance analysis (profiling),
and unlimited amount of code and data breakpoints
are available to you, so you can test code before
target hardware is available.

The TASKING ROM monitor debugger

The ROM monitor debugger is a powerful debug
instrument that can be used to debug a target without
requiring an expensive emulator. The key benefit of the
TASKING ROM monitor is that it does not need any
regular polling by the host platform and thus offers
optimal run-time performance. Many commercially
available evaluation boards are supported by the
TASKING ROM monitor (e.g. GLYN and Renesas
Diamond kit). As the ROM monitor is provided in C source,
it can be ported to new or custom hardware easily.

Renesas Emulator

CrossView Pro supports the Renesas PC4701 Emulator.
The GDI (Generic Debug Interface) is an open standard
that defines the interface between the execution
environment (e.g. simulator, ROM monitor, emulator)
and CrossView Pro. It enables full support for enhanced
features such as execution trace, code/data coverage
and performance analysis.

TASKING ROM synchronization tool
Integrated in the EDE is the TASKING ROM synchronization
tool. The ‘Sync’ dialog which is used with the ROM monitor
debugger will synchronize project settings like processor and
memory settings. Once the TASKING ROM monitor has been
flashed onto the target board using this tool, it will simplify
setting the target specifics of your project. By clicking the
Sync button, your project settings will be updated with the
target specifics found by the TASKING ROM monitor.

File system simulation
CrossView Pro I/O Simulation (IOS) allows the use of
standard ISO C system calls such as open(), read(), printf()
and scanf() within your embedded application in order
to interface with the host platform file I/O services.

Using IOS, you can read from and write to files on the host
platform or a CrossView Pro Virtual I/O window directly.
I/O Simulation will work in any CrossView Pro target
execution environment.

Program performance analysis
CrossView Pro provides a number of performance analysis
capabilities to help you further optimize your application as
well as shorten your debug session.

Code coverage

Code coverage enables you to check whether specific parts
of your application code have actually been executed.

Profiling

Profiling allows you to perform timing analysis on the
complete application or specific parts of it. Based upon
the profiling information you can easily decide which
functions should be optimized for speed.

Graphical Data Analysis

Graphical Data Analysis simplifies quick detection of
gross errors in signal processing routines and allows
you to analyze the data without the need of reviewing
or post-processing large files of raw data.

Four different analysis types are pre-defined:

x-t plotting

FFT (Fast Fourier Transformation)

Power spectrum

Eye diagram

Easy debugging of RTOS-based applications
TASKING’s Kernel-aware Debugging Interface (KDI) defines an
open standard interface between CrossView Pro and an RTOS-
Aware Debug Module (RADM). The RADM can be used to add
kernel-awareness to CrossView Pro for any commercial or
proprietary RTOS.

TASKING M16C FLASHER
Integrated in the TASKING EDE is an easy-to-use flash tool
called the TASKING M16C Flasher. This flasher interfaces
to the standard Renesas flash tool available on the chip.
The TASKING M16C Flasher allows you to directly flash
an ELF/Dwarf, Motorola S-Rec or Intel Hex file into the chip.
Flashing a program can be done via a Serial or USB connection.

COOPERATION WITH THIRD-PARTIES
Our extensive third-party cooperation ensures that you have
access to the tools you need to be most productive. Altium
works closely together with manufacturers of in-circuit-emulators,
real-time kernels, TCP/IP connectivity, CAN solutions and
evaluation boards for the M16C. For more detailed information
on M16C partners, please visit: www.tasking.com/m16c

CUSTOMER SUPPORT
When you purchase a TASKING product, it is the beginning of
a long-term relationship. Altium is dedicated to providing quality
products and support worldwide. This support includes program
quality control, a product update service, and support personnel
ready to answer your questions by telephone, fax or email.

A maintenance period is included with the purchase of TASKING
products and entitles you to enhancements and improvements
as well as individual response to problems. Annual maintenance
agreements are available to extend the initial support period.

PRODUCT PACKAGING AND ORDERING CODES
Each TASKING product comes with full documentation in easy-
to-use binders. The documentation is also available online and
provides full-text search capabilities for quick and easy lookup
of topics.

The VX-toolset for M16C is available for PC/Windows and
SUN/Solaris.

Product code Package contents
07-200-299-024 EDE/Editor

C/C++/EC++ Compiler
Assembler
Linker/Locator
CrossView Pro Simulator
ROM Monitor Debugger
TASKING Flasher

A trial version of the VX-toolset for M16C is downloadable from
our website at: www.tasking.com/m16c

AA LL TT II UU MM OO FF FF II CC EE SS WW OO RR LL DD WW II DD EE

NNoorrtthh AAmmeerriiccaa
Altium Inc.
3207 Grey Hawk Court
Suite 100
Carlsbad, CA 92010
Ph: +1 760-231-0760
Fax: +1 760-231-0761
sales.na@altium.com
support.na@altium.com

GGeerrmmaannyy
Altium Europe GmbH
Philipp-Reis-Straße 3
76137 Karlsruhe
Ph: +49 721 8244 300
Fax: +49 721 8244 320
sales.de@altium.com
support.eu@altium.com

AAuussttrraalliiaa
Altium Limited
3 Minna Close, Belrose
NSW 2085
Ph: +61 2 8622 8100
Fax: +61 2 8622 8140
sales.au@altium.com
support.au@altium.com

CChhiinnaa
Altium Information Technology (Shanghai) Co., Ltd
9C, East Hope Plaza
No.1777 Century Avenue
Shanghai 200122
Ph: +86 21 6182 3900
Fax: +86 21 6876 4015
sales.cn@altium.com
support.cn@altium.com

JJaappaann
Altium Japan K.K.
Nomura Fudosan Yotsuya Bldg 7F
2-12-1 Yotsuya
Shinjuku-ku, Tokyo
160-0004
Ph: +81 3 6672 6155
Fax: +81 3 6672 6159
sales.japan@altium.com
support.japan@altium.com

TThhee NNeetthheerrllaannddss
Altium Technology Centre
Altium BV
Saturnus 2
3824 ME Amersfoort
Ph: +31 33 4558584
Fax: +31 33 4550033
tasking@altium.com

www.tasking.com

Copyright © 2011 Altium Limited.

TASKING, the TASKING logo, Altium and the Altium logos are trademarks or registered trademarks of Altium
Limited or its subsidiaries. All other registered and unregistered trademarks referenced herein are the property
of their respective owners and no trademark rights to the same are claimed. Altium assumes no responsibility
for any errors that may appear in this document.

